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Strawberry sweetness and consumer preference
are enhanced by specific volatile compounds
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Christopher R. Barbey 1, Thomas A. Colquhoun3, Charles A. Sims5, Marcio F. R. Resende 6 and Vance M. Whitaker1

Abstract
Breeding crops for improved flavor is challenging due to the high cost of sensory evaluation and the difficulty of
connecting sensory experience to chemical composition. The main goal of this study was to identify the chemical
drivers of sweetness and consumer liking for fresh strawberries (Fragaria × ananassa). Fruit of 148 strawberry samples
from cultivars and breeding selections were grown and harvested over seven years and were subjected to both
sensory and chemical analyses. Each panel consisted of at least 100 consumers, resulting in more than 15,000 sensory
data points per descriptor. Three sugars, two acids and 113 volatile compounds were quantified. Consumer liking was
highly associated with sweetness intensity, texture liking, and flavor intensity, but not sourness intensity. Partial least
square analyses revealed 20 volatile compounds that increased sweetness perception independently of sugars; 18
volatiles that increased liking independently of sugars; and 15 volatile compounds that had positive effects on both.
Machine learning-based predictive models including sugars, acids, and volatiles explained at least 25% more variation
in sweetness and liking than models accounting for sugars and acids only. Volatile compounds such as γ-
dodecalactone; 5-hepten-2-one, 6-methyl; and multiple medium-chain fatty acid esters may serve as targets for
breeding or quality control attributes for strawberry products. A genetic association study identified two loci
controlling ester production, both on linkage group 6 A. Co-segregating makers in these regions can be used for
increasing multiple esters simultaneously. This study demonstrates a paradigm for improvement of fruit sweetness and
flavor in which consumers drive the identification of the most important chemical targets, which in turn drives the
discovery of genetic targets for marker-assisted breeding.

Introduction
The cultivated strawberry (Fragaria ×ananassa) is one

of the most widely grown fruit crops in the world due to
its sweet and aromatic flavor and health-associated
compounds including anthocyanins, antioxidants, fiber
and ellagic acid1. Breeding for flavor in strawberry has
been challenging due to the chemical complexity of the
trait and the variability of the production environment.
Targeted selection of flavor-associated chemicals in
strawberry has thus far been restricted to increasing sugar

content. In spite of improvements in eating quality over
time, most strawberries on the market still do not meet
consumer expectations of sweetness and flavor2. Efforts at
flavor improvement must be reinforced by investigating
the relationships between fruit chemical diversity and
consumer preference.
During strawberry fruit ripening, changing auxin levels

drive the accumulation of sugars and their derivatives, as
well as secondary metabolites3,4. Sucrose, glucose, and
fructose comprise the major soluble sugars in strawberry
and are rapidly translocated from photosynthesizing
organs to fruit, in synchrony with reductions in other
sugars including xylose, galactose, sugar phosphates and
sugar alcohols3. Besides sugars, amino acids, phenolic
compounds and volatiles are the main indicators of fruit
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ripening. Strawberry aroma is determined by low-
molecular-weight volatile compounds generated during
ripening. Over 360 volatiles have been identified in the
aroma of cultivated and wild strawberries, with about 280
of them reported in cultivated strawberry5. Esters, pri-
marily methyl and ethyl esters, constitute 25–90% of the
total abundance of volatiles in strawberry and provide
fruity notes6. Lactones, cyclic esters providing aromas
similar to those in peach, are prominent volatiles in some
varieties7. Aldehydes such as 2-hexenal, (E)- and 3-hex-
enal, (Z)- contribute to green or fresh aromas8. Furanones
such as furaneol and mesifurane are often associated with
sweet aromas9.
Sensory analyses are necessary to comprehensively

characterize fruit flavors, which are highly influenced by
retronasal olfaction10. Odor Activity Values (OAVs),
which are ratios of concentration to odor thresholds, were
adopted in early studies to identify potent volatile com-
pounds in strawberry11. These studies identified several
compounds as important to strawberry flavor including
(Z)-3-hexenal (green), 4-hydroxy-2,5-dimethyl-3(2H)-
furanone (sweet), methyl butanoate (fruity), and ethyl
butanoate (fruity). However, OAVs do not account for
interactions between the matrix and the volatile, since the
denominator only reflects odor intensity in a water solu-
tion12. Furthermore, OAVs are only based on orthonasal
olfaction which is a different sensory experience than
retronasal olfaction. Gas chromatography-olfactometry
(GC-O) is another powerful tool to identify potent vola-
tiles in food. Comparable results were obtained by GC-O
and OAV for strawberry, agreeing on the most intense
odorants8,13. However, while these studies identified
potent volatiles, synergy among volatile compounds to
produce human sensory responses and interactions
between taste and retronasal olfaction were unexplored.
Studies on tomato flavor have highlighted the flaws of

using OAVs exclusively for determining volatiles impor-
tant to sensory perceptions14. Large-scale sensory and
chemical studies have facilitated identification of flavor-
or taste- associated volatiles15, allowing breeding efforts to
focus on genetic improvement of a smaller set of impor-
tant volatiles. Once natural genetic variations responsible
for volatile biosynthesis within heirloom tomato popula-
tions were exploited, DNA marker-assisted breeding
techniques were utilized to introgress desirable alleles for
volatile biosynthesis genes into modern genetic back-
grounds16. A recent study in blueberry identified genomic
regions associated with those compounds and also
explored correlations between sensory attributes and
volatile compounds17. A previous study in strawberry by
the present authors, utilizing approaches and techniques
similar to Tieman et al.15, linked sugars, acids, and volatile
data to consumer panel data for 35 strawberry geno-
types18. Significant correlations between volatiles and

sweetness and flavor intensities were found. Due to the
two-year time-frame of the study, total sample size was
limited to 54, and chemicals influencing consumer
liking were not explored18. Marker-assisted selection in
strawberry breeding for some flavor-associated volatiles
has recently become a reality19. There is now a need to
identify more sensory-associated volatile compounds
in order to breed more comprehensively for strawberry
flavor.
Genetic background is a major factor influencing pri-

mary and secondary metabolites in fresh strawberry fruit.
Multiple studies have found that volatile compounds vary
both qualitatively and quantitatively among strawberry
varieties, leading to flavor differences5–7,20. Notable dif-
ferences in volatile profiles have been observed in popular
cultivars grown in the US, with more than ten-fold dif-
ference observed in all classes of volatiles7,21,22. Distin-
guishable separations between summer-grown European
strawberry cultivars and two winter-grown Florida culti-
vars were found for 12 key strawberry volatiles8. During
domestication, some desirable aroma-active volatiles have
been lost over time23. Methyl cinnamate and methyl
anthranilate, which are abundant in wild ancestor F. vesca
and elicit pleasant aromas, are not detectable in modern
cultivars24. Temperature is another critical factor that
influences strawberry quality. In a single winter produc-
tion season, temperature fluctuations drove substantial
changes in fruit metabolic composition25. Cooler nights
enhanced both sucrose accumulation and production of
aroma compounds in a greenhouse setting26. Other
environmental factors influencing strawberry fruit che-
mical abundance include light27, maturity, postharvest
storage6, cultivation system28, and location29.
Recent studies have found that specific volatiles are

capable of enhancing, not just flavor perception, but also
sweetness perception in fresh fruit15,18. Hence, quantifi-
cation of volatiles, sugars and acids should allow some
degree of predictive ability for sensory characteristics,
including sweetness. The recent development of machine
learning models has facilitated prediction of sensory
attributes and hedonic experiences based on chemistry.
Partial least square (PLS) and its derivatives have been
tested and validated for prediction of sensory attributes in
different fruits, vegetables, and drinks30–34. In one
example, artificial neural networks were used to simulate
non-linear relationships for improvement of prediction
accuracy for flavor intensity in blackcurrant35. To date, no
predictive models for sensory characteristics or liking
have been reported for fresh strawberries.
The main objectives of present study were to (1) explore

the chemical drivers of consumer preference in fresh
strawberries; (2) identify volatile compounds enhancing
sweetness perception independently of sugars; and (3)
predict sweetness perception and liking from chemical
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data. This work builds on previous research18, increasing
the sample size approximately three-fold and applying
updated mathematical and predictive models.

Results
Relationships among sensory and hedonic consumer
responses
Over the course of seven years, 384 consumer panelists

with an average age of 31.7 participated in evaluating
strawberry samples. Panelists were 35% male and 65%
female. Significant correlations were found among all
pair-wise comparisons of sensory and hedonic ratings
(Supplementary Table S1A). Sweetness (r= 0.714*), tex-
ture liking (r= 0.783*) and flavor intensity (r= 0.688*)
were highly correlated with overall liking. Sourness (r=
0.298*) had a significant but lower positive correlation
with overall liking. Notably, sweetness had significant
correlations with all other sensory ratings (r= 0.411*,
0.592* and 0.838* for sourness, texture and flavor inten-
sity, respectively). To remove the confounding effect of
sweetness, partial correlations were calculated between
liking and other attributes while controlling for sweetness
(Supplementary Table S1B). After controlling for sweet-
ness, the correlation between sourness and liking reduced
to an insignificant level (r= 0.008), which was consistent
with previous findings18. Conversely, this result was at
odds with negative effects of sourness on liking found in
other fruits34,36. In hierarchical clustering, liking, straw-
berry flavor, and sweetness were grouped in one cluster
with 100% probability, separate from the sourness cluster
with 0% probability (Fig. 1).
Due to a diverse collection of strawberry samples from

different genetic backgrounds and harvest dates, patterns in
perceived sweetness and consumer liking were distinguish-
able among genotypes and harvest dates. The average liking
score was 25.8 across all samples. The top five samples for
consumer liking were ‘Festival’ (twice), Sensation® ‘Flor-
ida127’, ‘Albion’ and Proprietary 2 (Supplementary Table
S2). However, a large amount of the variability in sensory
attributes was driven by temperature. Declines in sweetness
and consumer liking over increasing temperature (at dif-
ferent harvest dates) was illustrated with Sensation® ‘Flor-
ida127’, ‘Florida Radiance’ and ‘Florida Beauty’ in 2016 and
2017 seasons (Fig. 2). The same pattern was also observed
for total sugars but not total volatiles (Fig. 2). Intersections
among lines suggest some level of genotype by environment
(G×E) interactions underlying fruit sensory attributes.

Key chemical compounds contributing to sweetness and
liking
Chemical analysis of 148 samples yielded 118 com-

pounds including 3 sugars, 2 acids, and 113 volatiles
(Supplementary Table S3). Besides sugars and acids, 59
volatiles were common among all three datasets

corresponding to three periods: 2011–2012, 2013–2015
and 2016–2017. Most of the 59 common volatiles were
esters (35), followed by aldehydes (7) and ketones (7).
As a first step in identifying the chemical drivers of

hedonic experience, correlations among all sensory and
chemical attributes were examined. A total of 646 sig-
nificant correlations (p < 0.01) were detected among all
variables (Fig. 3, Supplementary Table S4). Glucose (r=
0.63 and r= 0.55) and sucrose (r= 0.62 and r= 0.60) had
the highest correlations with both sweetness and liking. In
addition to these two sugars, 2-pentenal, (E)- (V12); 1-
penten-3-one (V3); heptanal (V37); fructose; butanoic
acid, butyl ester (V43); butanoic acid, 3-methyl-, butyl
ester (V51); 5-hepten-2-one, 6-methyl- (V42); and γ-
dodecalactone (V81) were the compounds with the
highest correlations (r > 0.4) to liking. The list of highly
correlated volatiles (r > 0.4) with sweetness included those
correlated with liking, plus acetic acid, hexyl ester (V46);
butanoic acid, octyl ester (V69); acetic acid, butyl ester
(V21); and butanoic acid, hexyl ester (V62). The number
of volatiles negatively correlated with liking or sweetness
was smaller. 2-Hexen-1-ol, acetate, (E)- (v47) exhibited
the strongest negative correlations with both liking (r=
−0.27) and sweetness (r=−0.21). In a network analysis,
significant correlations with liking and sweetness were
visualized with edges connecting to sugars; multiple
esters; γ-dodecalactone (V81); 5-hepten-2-one, 6-methyl-
(V42); 1-penten-3-one (V3); heptanal (V37); 2-pentenal,
(E)- (V12) (Fig. 4).
Most volatiles significantly correlated with sweetness and

liking were corroborated in the PLS models. PLS models
were able to explain more than 80 percent of variation for
sweetness in each of the data subsets (R2= 82.93%, 80.96%
and 93.37%, respectively). PLS is advantageous when ana-
lyzing small samples sizes, and the highest R2 was obtained
for the 3rd dataset which has the smallest sample size. VIP
tests revealed 20 important volatiles (VIP > 1) common to
the three subsets in addition to glucose, fructose and sucrose
(Table 1 and Supplementary Table S5). These consist of 10
esters, 5 aldehydes, 2 lactones, 2 ketones, and 1 alcohol.
Sixteen of these volatiles passed t-tests derived from linear
models at Bonferroni corrected p-values < 0.05, indicating
that they increased sensory sweetness independent of
total sugars. Important esters included seven butanoic acid
esters. Among them, butanoic acid, butyl ester (V43) has the
highest r of 0.51. Two abundant lactones, γ-dodecalactone
(V81) and γ-decalactone (V74) were both selected in the
PLS, also showing high correlations with sweetness (r= 0.45
and 0.33). 5-Hepten-2-one, 6-methyl- (V42) with floral
aroma was one of the two ketones showing enhancing effect
on sweetness with high correlation (r= 0.45).
A slightly lower portion of variation in response was

explained in the liking models (77.56%, 70.49% and
92.41%, respectively). Sucrose was the most important
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compound to consumer liking in the first two datasets.
Fructose and glucose had lesser but important influence
on liking in all three datasets. Important volatiles obtained
for consumer liking included 10 esters, 3 aldehydes, 1
lactone, 3 ketones, and 1 alcohol. Eleven of these com-
pounds were significant for the t-test (Table 1 and Sup-
plementary Table S5), providing evidence that they had
positive impact on consumer liking that was independent
of total sugars. Butanoic acid, ethyl ester (V19), known to
be one of the most abundant and important contributors
to strawberry aroma, showed significant positive correla-
tions (r= 0.31) with liking but did not pass the PLS
threshold for two of the three datasets. Other abundant
esters like butanoic acid, methyl ester (V9); hexanoic acid,
methyl ester (V40) and hexanoic acid, ethyl ester (V44) all
showed positive but low to moderate correlations (r=
0.29, 0.17, and 0.13, respectively) with liking and did not
reach PLS thresholds. Fifteen compounds were identified
via PLS as important drivers of both sweetness and liking
models, reflecting the high correlation between sweetness
and liking (Table 1).

Predicting sweetness and liking with sugars, acids, and
volatiles
Since sugars and acids are known to be important fac-

tors influencing sweetness perception and consumer
liking, we first built a model with sugars and acids.

This model produced an R2 of 0.41 in testing CV (inde-
pendent test dataset) for sweetness, indicating that 41% of
variation in sweetness could be accounted for by sugars
and acids. To further investigate the influences of volatiles
on sweetness and liking, we included them as variables
and tested prediction accuracies with a broad spectrum of
algorithms (Fig. 5a), including decision-tree based Ran-
dom Forest (RF), bayes GLM, GLM, GLMBOOST, and
LASSO. With the inclusion of volatiles, LASSO and
GLMBOOST models explained the most variation for
sweetness in testing CV (R2= 0.65 and 0.69), out-
performing the model with sugars and acids by 28% for
the test dataset. In addition, LASSO and GLMBOOST
generated the lowest standard deviation of R2 among all
models (Fig. 5a). Similar results were produced in pre-
diction of liking but with a slightly lower total variance
explained. LASSO model accounted for 55% in testing
CV, compared to only 30% in models with sugars and
acids alone (Fig. 5b). These results provide further strong
evidence of volatile compound enhancement of straw-
berry sweetness perception and consumer liking inde-
pendently of sugars.

Chemical networks in strawberry fruit
Broad variations in quantity of chemical compounds

were measured for the 148 strawberry samples. For
example, the most abundant ester (butanoic acid, methyl

Fig. 1 Cluster dendrogram of sensory attributes, volatiles, sugars and acids. AU (approximately unbiased) p-values are in red and BP (bootstrap
probability) p-values are in green
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ester; V9) ranged from 92.0 ng1 100gFW−1 h−1 in ‘Radi-
ance’ in 2017 to 7359.6 ng1 100gFW−1 h−1 in a proprie-
tary sample from 2011, an approximately 70-fold
difference. Qualitative differences were also observed. For
example, methyl anthranilate (V68) was only detectable in
3 samples and 2-nonanone (V56) was detected in 99 of
148 samples (Supplementary Table S3).
Collinearity among chemicals may reflect metabolic

pathways, helping to narrow the number of genetic targets
for flavor improvement. Fructose and glucose exhibited a
very high correlation (r= 0.91). The highest positive
correlations among volatiles were found between buta-
noic acid, octyl ester (V69) and butanoic acid, decyl ester
(V80) (r= 0.87), followed by hexanoic acid, ethyl ester
(V44) and octanoic acid, ethyl ester (V64) (r= 0.83); 1-
penten-3-one (V3) and 2-pentenal, (E)- (V12) (r= 0.83);
and acetic acid, hexyl ester (V46) and acetic acid, octyl
ester (V65) (r= 0.82). Other correlations are detailed in
Fig. 3 and Supplementary Table S4.
Group correlations and clusters among volatiles were

better illustrated with hierarchical clustering and network
analyses. Fatty acid esters derived from the same alcohol
were grouped together in several clusters (Fig. 1). For
example, acetic acid, butyl ester (V21); butanoic acid,

butyl ester (V43); and butanoic acid, 3-methyl-, butyl ester
(V51) were grouped with 81% confidence. Butanoic acid,
3-methyl-, octyl ester (V72); hexanoic acid, octyl ester
(V79); butanoic acid, octyl ester (V69); and butanoic acid,
decyl ester (V80) were clustered with 93% confidence.
Other fatty acid ester clusters contained esters derived
from the same fatty acid. For instance, acetic acid, pentyl
ester (V38); acetic acid, hexyl ester (V46); and acetic acid,
octyl ester (V65) were grouped with 62% confidence. A
sulfur ester group was remote from the main ester group
with a strong bond (96% confidence) between methyl
thioacetate (V6) and butanethioic acid, S-methyl ester
(V34). Besides esters, we observed an aldehyde group
including octanal (V45), heptanal (V37) and nonanal
(V59) with 99% confidence.
In the chemical networks, sixty-five nodes were con-

nected by 299 significant edges (Fig. 4). A distinct buta-
noic acid ester cluster consisting of 8 esters including
butanoic acid, hexyl ester (V62) and butanoic acid, octyl
ester (V69). A second ester cluster centered on hexanoic
acid, ethyl ester (V44) included multiple ethyl esters, such
as octanoic acid, ethyl ester (V64), pentanoic acid, ethyl
ester (V36), and propanoic acid, ethyl ester (V7). Alde-
hydes had their own cluster around heptanol (V37),

Fig. 2 Liking, sweetness, total sugars, and total volatiles of three cultivars as influenced by five-day average soil temperature prior to
harvest. The trend line was modeled with linear regression. Fruits were harvested on 2/22/2016 (five-day average 17.4 °C), 3/7/2016 (18.8 °C), 2/7/
2017 (18.4 °C), and 2/14/2017 (19.5 °C). Sizable differences among genotypes and among temperatures indicate strong genotype and temperature
effects on desired sensory attributes and total sugars
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Fig. 3 Pairwise correlations of consumer attributes and chemical compounds. Dots represent significant correlations after false discovery rate
(FDR) correction. The intensity of color and size of each dot is propotional to the absolute value of the correlation coeffcient (r). Three highly
correlated regions of the plot are enlarged

Fan et al. Horticulture Research            (2021) 8:66 Page 6 of 15



surrounded by 2-pentenal, (E)- (V12); nonanal (V59);
hexanal (V20); pentanal (V5); octanal (V45) and 2-hex-
enal, (E)- (V28).

Genetic and chemical diversity among tested varieties
In order to explore the genetic diversity of the geno-

types tested, we obtained SNP data via the Axiom®

IStraw35 array37 for 26 samples. The genotyped panel
comprised 20 UF genotypes, 4 UC-Davis genotypes, 1
proprietary genotype and 1 genotype of European origin.
The PCA individual plot showed a clear separation
between UC and UF genotypes on PC2 (Fig. 6a). On the
other hand, PC1 explained the most variation within UF
genotypes. Combining PC1 and PC2 explained 22.1 per-
cent of variation. In a complementary analysis we con-
ducted PCA with sugars, acids and 59 common volatiles
(Fig. 6b). No visible separation for genotypes from dif-
ferent origins was observed in the individual plot. Com-
bining PC1 and PC2 explained 29 percent of variation.

Two major QTLs for production of esters
A chemical network analysis suggested the possibility of

common genetic control for multiple esters (Fig. 4). To
investigate this possibility, QTLs for ester production
were mapped across eight experimental crosses. Medium-
chain esters including acetic acid, decyl ester; acetic acid,
hexyl ester; acetic acid, octyl ester; acetic acid, nonyl ester;
butanoic acid, butyl ester; and butanoic acid, octyl ester
shared a single QTL on linkage group 6 A (Supplementary
Fig. S1). Single-marker analyses revealed that a shared
maker (AX-123358920) explained 7.7% to 30.3% of the
variation in ester abundances. Another QTL on the same
linkage group but at a distinct location was discovered for
both butanoic acid, ethyl ester and hexanoic acid, ethyl

ester (Fig. 7). The single shared marker (AX-166508286)
explained 15.0% of the observed variance in hexanoic acid,
ethyl ester abundance (p= 1.5e-5) and 15.6% of butanoic
acid, ethyl ester abundance (p= 1.6e-5).

Discussion
A large-scale sensory and chemical analysis of 148 fresh

strawberry samples was conducted over seven years for
the purposes of examining the sensory and chemical
drivers of consumer preference. Our study largely
expands the previous work18 in terms of sample size, and
provides new insights towards volatiles contributing to
liking using updated statistical methods, chemical net-
works, and volatile genome-wide associations. In agree-
ment with studies in tomato, blueberry and the previous
strawberry work, perceived sweetness (r= 0.714*) was the
major determinant for liking in strawberry15,18,34. A pre-
vious study using a glucose solution found that sweetness
and hedonics followed a biphasic relationship in which
the apex of liking was reached at glucose concentration of
500 mM38. In the present study the highest recorded total
sugars concentration was 10056.2 mg1100gFW-1, roughly
estimated to approximately 10 mM glucose solution,
much lower than the equivalent optimal concentration.
This was consistent with a low degree of satisfaction in
sweetness in the sensory panel, where only 8.2% of
strawberry samples reached the panelist’s reported ideal
sweetness (data not shown). This means that 91.8% of
samples the sensory panels failed to achieve the panelist’s
ideal sweetness for a strawberry. This discrepancy
between ideal sweetness and sample sweetness dramati-
cally illustrates the need for breeding to increase sweet-
ness in strawberries. One strategy to enhance perceived
sweetness is to increase sugar concentration. The major
sugars in strawberry fruit are glucose, fructose and
sucrose39. All three sugars exhibited high correlations
with sweetness (Table 1 and Fig. 3) and were the top
drivers of liking. Nevertheless, breeding strawberries for
higher sugar content may result in negative impacts on
other critical traits. A trade-off between yield and soluble
solids content (SSC) was found in UF strawberry breeding
germplasm at the additive genetic level, demonstrating
that genetic gains for SSC would likely result in yield
losses40. In peach, higher SSC is associated with a longer
fruit development period and reduced fruit weight41. In
contrast, volatiles typically occur at 10^3 to 10^6 times
lower concentration (uM to nM range) than sugars.
Increasing sweetness-enhancing volatile concentrations
even a small amount has the potential to increase the
perception of sweetness and overall liking at a lower
carbon cost to industry-demanded agronomic traits.
Thus, non-sugar sources of sweetness would be highly
advantageous for improving both flavor and agronomic
traits simultaneously.

Fig. 4 A sensory-chemical network for strawberry. Significant
correlations are connected by edges. Sizes of nodes are proportional
to centrality scores. Centrality scores were calculated for each node to
reveal importance of the volatile in the cluster. Volatiles are colored by
chemical class
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When fruits are chewed or swallowed, volatiles flow
into the retronasal tract. Signals from retronasal
olfaction interact with signals from the tongue in the
brain, imparting the sensation of taste15. Evidence of
integration of flavor and taste was adduced by a faster
response time when drinking a flavored sugar solu-
tion42. While the effects of volatiles on flavor is widely
known, the enhancement of sweetness by specific
volatiles in sugar solutions or fruit puree is also a
known phenomenon43. When accompanied by straw-
berry odor, perceived sweetness increases at a range of
sugar concentrations in water solution44. In the present

study, we demonstrate this phenomenon via consumer
testing of actual strawberry fruit.
Strawberry volatile compounds are highly diverse and

variable. A recent study consolidating information from
25 strawberry volatile studies from 1991 to 2016 found
no consensus on the detected volatiles5. The most fre-
quently identified volatile compounds have been dis-
tributed among the esters, acids, lactones, aldehydes,
furans, alcohols, ketones, and terpenoids. In our che-
mical analyses, we captured 113 volatiles with 59 com-
mon to all years (Supplementary Table S3). In our
previous study comprising 54 of these samples, six

Table 1 Variable importance for predicting sweetness and liking

Chemical compound VIPs in sweetness model VIPs in liking model

2011–2012a 2013–2015 2016–2017 p-valueb 2011–2012 2013–2015 2016–2017 p-value

Glucose 1.68 2.14 1.52 c 1.19 2.18 1.65

Fructose 1.60 1.62 1.79 1.00 1.65 1.80

Sucrose 2.17 2.10 0.27 2.19 2.32 0.20

1-Penten-3-one 1.76 1.26 1.34 0.0000 1.87 1.31 1.23 0.0000

2-Pentenal, (E)- 1.52 1.53 1.76 0.0000 1.83 1.48 1.71 0.0000

2-Penten-1-ol, (Z)- 0.19 1.12 2.00 1.0000 0.33 1.02 1.94 1.0000

Heptanal 1.36 1.26 1.60 0.0000 1.43 1.13 1.38 0.0000

5-Hepten-2-one, 6-methyl- 1.16 1.42 0.49 0.0000 1.31 1.20 0.41 0.0000

Butanoic acid, butyl ester 1.38 1.48 0.88 0.0013 1.17 1.48 1.03 0.3781

Acetic acid, hexyl ester 1.39 1.24 0.39 0.0013 1.17 1.12 0.52 1.0000

Butanoic acid, 3-methyl-, butyl ester 1.23 1.33 0.77 0.0000 1.05 1.42 1.02 0.0033

Butanoic acid, pentyl ester 1.28 1.18 0.00 0.0000 1.28 1.12 0.0000

Nonanal 1.16 0.81 1.36 0.0000 1.33 0.77 1.30 0.0013

Butanoic acid, hexyl ester 1.50 0.90 1.71 0.0467 1.27 0.87 1.70 1.0000

Butanoic acid, octyl ester 1.01 1.30 1.30 0.0007 0.79 1.32 1.40 0.2430

Butanoic acid, decyl ester 1.06 1.03 1.23 0.0000 1.01 1.07 1.27 0.0005

γ-Dodecalactone 1.51 1.25 0.74 0.0000 1.54 1.21 0.84 0.0000

Hexanoic acid, butyl ester d 1.34 1.44 0.0002 1.26 1.48 1.0000

γ-Decalactone 1.08 1.12 0.69 0.2637 —e — — —

Acetic acid, butyl ester 1.16 1.34 0.44 0.0371 — — — —

2-Hexenal, (E)- 1.17 0.52 1.61 0.0000 — — — —

Benzaldehyde 1.01 1.99 1.0000 — — — —

Butanoic acid, phenylmethyl ester 1.03 1.04 1.0000 — — — —

Butanoic acid, propyl ester — — — — 1.18 1.09 0.86 1.0000

Methyl Isobutyl Ketone — — — — 0.79 1.07 1.47 1.0000

Butanoic acid, 3-methyl-, octyl ester — — — — 0.91 1.21 1.05 1.0000

Independent partial least square (PLS) models were fitted for 2011–2012, 2013–2015 and 2016–2017 datasets. Variable importance in projection (VIP) scores measure
the importance of each variable in predicting the response variable. A t-test was conducted for each of the chemical compound to determine its significance to model
sweetness or liking while controlling for total sugars. aSeasons. bp-Values were ajusted with bonferroni corrections. cp-Value was not obtained for sugars. dCompound
not detected. eCompounds with no VIPs did not pass the threshold of 1 which is the typical cutoff for relevant variable selection
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volatiles (1-penten-3-one (V3); γ-dodecalactone (V81);
butanoic acid, pentyl ester (V53); butanoic acid, hexyl
ester (V62); acetic acid, hexyl ester (V46); and butanoic
acid, 1-methylbutyl ester (V48)) were found significantly
correlated with sweetness independent of sugars18. In
the present study, five of these six volatiles except for
butanoic acid, 1-methylbutyl ester were validated in
additional datasets and fourteen additional sweetness-
enhancing volatiles and eighteen liking-enhancing

volatiles were reported. Among the nineteen sweetness
enhancers, ten are esters with nine of the ten having a
carbon number more than eight. To our surprise, the
most abundant esters butanoic acid, methyl ester (V9) and
butanoic acid, ethyl ester (V19) did not reach the VIP
threshold for some datasets, even though significant
correlations were found between butanoic acid, ethyl ester
and liking and sweetness.
Strawberry varieties with high concentrations of lac-

tones, which impart peach-like odor, have been impli-
cated as preferable in previous consumer tests45. We show
evidence that γ-decalactone (V74) and γ-dodecalactone
(V81) are sweetness-enhancing. Nevertheless, only γ-
dodecalactone was important for liking. Distributions of
the two lactones were also disparate, with γ-decalactone
following a bimodal distribution in our study, consistent
with its presence being controlled by a single gene19. On
the other hand, γ-dodecalactone followed a normal dis-
tribution suggestive of polygenic control. Three correlated
volatile compounds, 1-penten-3-one (V3); 2-pentenal,
(E)- (V12); and 2-penten-1-ol, (Z)- (V16) were highly
associated with sweetness and liking. Although none of
them elicit sweet aroma according to the literature46, their
interactions with sugars or other volatiles at the neuro-
logical level may lead to increased sweetness perception
and hedonic experience. Interestingly, 1-penten-3-one
and 2-pentenal, (E)- positively impacts liking in tomato16,
indicating that common contributors to liking may exist
across a wide diversity of fruits. Two volatiles impacting
liking in this study, nonanal (V59) and 5-hepten-2-one,
6-methyl- (V42) impart flowery notes to the strawberry,
which are important building blocks in the diversity of

Fig. 5 Evaluation of models incorporating volatiles. Histograms of performance of six machine learning algorithms using sugars, acids, and
volatiles to predict sweetness intensity (a) and consumer liking (b) compared to a model with sugars and acids only (leftmost in both figures). Black
lines represent the average R2 of nested cross validation while gray lines show the average R2 when using a test dataset. Error bars represent standard
deviations based on 100 iterations

Fig. 6 Principal component analyses of genotypes. a PCA) plot of
genotypes using Axiom® IStraw35 38000 single nucleotide
polymorphisms (SNPs). Genotypes from different origins are grouped
by color. Percentage of total variation explained by each component
is shown in parentheses. b PCA plot of genotypes using volatiles,
sugars and acids
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strawberry aroma. Carotenoids including 5-hepten-2-one,
6-methyl- were also positively correlated with consumer
acceptability in tomato47. Due to the isolation and the
detection techniques employed in this study, furaneol was
not quantified. Future experiments investigating the
influence of furaneol on strawberry will need to harness
other isolation approaches. In tomato, Buttery et al.48

demonstrated the isolation of and detection furaneol with
anhydrous sodium sulfate coupled with dynamic head-
space sampling.
Fruit chemical data have great potential for predicting

sensory responses and carry the advantage of accuracy
and objectivity as targets for genetic improvement. Uni-
variate models with soluble solid content or titratable
acidity have often provided poor prediction of liking or
sensory attributes49. Including additional sensory con-
tributors like volatiles as variables can increase model
prediction accuracy. However, a mathematical challenge
of adding volatile data to prediction models is the
depletion of degrees of freedom with high dimensional
data. A few studies have addressed this problem by
adopting different statistical models like multivariate
models, PLS models, principle component regression
models, and artificial neural networks35,49,50. In these
studies, machine learning models always resulted in
higher explained variance of sensory attributes than
simple models with sugars only. However, these studies

have limited applicability, suffering from small sample size
or lack of cross-validation50,51. In this study, 90% samples
were used to train the model and 10% was exclusively
used for testing. Comparisons of multiple prediction
methods revealed a 28% increase in variation explained
for sweetness using a LASSO model compared to linear
model with sugars and acids, as well as 25% in liking.
GLMBOOST and LASSO models exhibited better per-
formance than the traditional PLS model in all quality
measurements. On the other hand, the large increasement
in the R-square value after incorporating volatile data
corroborates the importance of volatiles to enhance
sweetness and consumer liking.
Strawberry quality is strongly influenced by both genetic

and environmental factors5,25,52. In our analyses, genetic
variation affected presence and absence of volatiles as well
as their abundance (Supplementary Table S3). In addition,
temperature fluctuated dramatically during the evaluated
seasons, from periods of nearly freezing weather in
December and January to an average over 26 °C in March
and April, far above the optimal temperature for fruit
quality52. Thirteen compounds including citric acid and
total sugars were significantly affected by harvest date
within season (data not shown). Similarly, multiple other
studies found declines of total sugars or SSC during the
course of strawberry growing seasons25,53. Although a
seasonal decline was observed for total volatile abundance

Fig. 7 Genome-wide association of esters in strawberry fruit. a Manhattan plots for hexanoic acid, ethyl ester and butanoic acid ethyl ester.
A shared QTL was observed on linkage group 6 A. b A single shared marker explained a large portion of variation in the corresponding ester
abundance. Different letters indicate significant differences at p= 0.05
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(Fig. 2), it was not statistically significant, and not all
volatiles were negatively affected by temperature. In
blueberry, fructose and glucose abundance exhibited sig-
nificant G×E or environmental effects, in contrast to
many of the volatiles34. Perhaps volatiles may hold part of
the key for stabilizing sensory qualities in the face of a
changing environment and may attenuate the impact of
declines in total sugars with increasing temperature.
Network and clustering analyses of metabolites may
provide evidence for common biosynthetic pathways or
regulation mechanism to help narrow targets for genetic
improvement. Here we used pair-wise correlations and
hierarchical clustering approach to explore connections
among volatiles. Fatty acid esters were clustered based on
either alcohol substrate or acyl-CoA substrate. Butanoic
acid esters were clustered by both approaches with high
confidence (Figs. 1 and 4). Ethyl esters, such as octanoic
acid, ethyl ester (V64); pentanoic acid, ethyl ester (V36);
propanoic acid, ethyl ester(V7); and hexanoic acid, ethyl
ester (V44) were highly correlated and clustered in the
volatile network. Common genetic regulation for esters
was further corroborated with the discovery of major
QTLs shared among multiple medium-chain esters and
the two most abundant ethyl esters. In a European
strawberry mapping population, possibly the same QTL
on linkage group 6-1 influenced the productions of mul-
tiple medium-chain esters54, which supports broad
applications for maker assisted selection at this locus to
improve sensory sweetness and flavor. Based on evidence
of significant makers and ripening-induced genes55, we
identified two candidate genes for the medium-chain
esters QTL and the ethyl esters QTL. The candidate for
the medium-chain esters QTL is a putative cinnamoyl-
CoA reductase1 (maker-Fvb6-1-augustus-gene-164.26),
upregulated more than five-fold in red fruit stage cam-
pared to the green fruit stage (Supplementary Fig. S2).
This enzyme catalyzes the reduction of a substituted
cinnamoyl-Coa, which may provide aldyhyde substrates
for downstream esterification. A putative pyruvate
decarboxylase-2 (maker-Fvb6-1-augustus-gene-297.79)
was found within the ethyl esters QTL region. The
expression of this gene increased 2.3 times from the green
fruit stage to the red fruit stage (Supplementary Fig. S2).
Pyruvate decarboxylase-2 is responsible for conversion of
pyruvate to acetyl cozenzyme A (CoA), a essential sub-
strate for ester biosynthesis56. Another important volatile
class, aldehydes, synthesized via decarboxylases or
hydroperoxide lyase57,58, has not been well-characterized
in strawberry. Our network analysis also predicts a com-
mon enzyme catalyzing a range of aldehydes. In wild
relative Fragaria vesca, a volatile metabolomics study
using near-isogenic lines also showed ester and aldehyde
clusters59. Similar coordinated metabolic networks were
demonstrated in peach, tomato, apple, and melon15,60–62.

Together these analyses reveal concerted regulation
within and between volatile classes in both climacteric
and non-climacteric fruits.
While consumers desire many traits in fresh straw-

berries, including appearance and health attributes, flavor
ranks at the top2. Flavor is a difficult trait to improve due
its chemical complexity, strong environmental effects and
negative relationships with grower-demanded agronomic
traits. It is also not trivial to measure. Quantifying sen-
sory attributes for every genotype in the breeding pool is
not practical, nor is comprehensive volatile quantifica-
tion. In this study we have identified a reduced set of
chemical targets for consumer liking and sweetness
improvement in strawberry. High-throughput and cost-
effective DNA markers can be easily developed based on
the significant makers identified from our association
analysis and implemented in diverse strawberry breeding
programs. We must also consider that this study inten-
tionally samples the chemical diversity of commercial
germplasm that is readily deployed in agriculture. Yet
distinct flavors in the wild relatives of cultivated straw-
berry could be introgressed into the cultivated germ-
plasm pool, expanding the flavor toolbox of modern
strawberry in the long-term. Narrowing the non-sugar
targets for sweetness-enhancement in strawberry is an
important step toward a worthy goal: increased consumer
satisfaction for fresh strawberries.

Materials and methods
Ethics statement
Consumer panels were conducted at the Food Science

and Human Nutrition Department at the University of
Florida (UF) in Gainesville, FL. The UF Institutional Review
Board 2 (IRB2) chaired by Ira S. Fischler approved the
protocol and written consent form (case #2003-U-0491)
that sensory panel participants were required to complete.

Plant material and fruit production
From 2010-2017, 148 strawberry (Fragaria ×ananassa)

samples from 48 cultivars and breeding lines (Supple-
mentary Table S6) were harvested from strawberry
research plots of the University of Florida (UF) Gulf Coast
Research and Education Center (GCREC) (Balm, FL) or
the Florida Strawberry Growers Association (FSGA)
headquarters in Dover, FL. All fruiting field trials were
managed according to commercial standards for Florida
annual plasticulture63. Data from 54 samples harvested
during 2010-2012 were analyzed and published in a pre-
vious paper18. These samples represented major com-
mercial varieties grown in California, Florida and Europe.
Ninety-four additional samples were collected during
2013-2017, representing a wider range of UF germplasm
including varieties and advanced breeding lines. Thirty-
three genotypes were harvested more than one time
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across the seven years. The combined 7-year dataset
captured variation produced by genetics, harvest dates
and seasons (Supplementary Table S6).
At each harvest date, fully ripe fruit with at least 90% red

surface coloration from three to five genotypes were
harvested from the field in the early morning, transported
to the Food Science sensory lab in Gainesville, FL, and
stored at 4 °C in the dark overnight. Each sample con-
sisting of at least 200 fruits was collected from a set of 500
plants. Seven or more fruits, each collected from a sepa-
rate plant were randomly chosen for chemical quantifi-
cation. The rest were used for sensory evaluation during
the next morning. Temperature data were obtained from
the Balm, FL station of the Florida Automated Weather
Network located directly adjacent to the plots from which
strawberries were sampled. Soil temperature was recorded
at a depth of -10 cm. Temperature data were used to
regress liking, sweetness, total sugar and total volatiles
from three cultivars during the 2016 and 2017 seasons.

Sensory evaluation
In each session, an average of 100 consumers were

divided into individual booths and utilized specialized
sensory software to rate the samples (CompuSense® 5
Sensory Analyses Software, CompuSense, Guelph,
Canada). One or two whole strawberries from each of
three to five randomly coded and ordered genotypes were
served per individual/session. All strawberries were
served at room temperature.
Consumers were asked to rate hedonic attributes

(consumer liking and texture liking) on the Global
Hedonic Intensity Scale (GHIS), which was anchored with
the most intense liking ever experienced at the top (+100)
and the most intense disliking ever experienced at the
bottom (-100). Intensity of individual sensory attributes
(sweetness, sourness and strawberry flavor) were scored
on the Global Sensory Intensity Scale (GSIS) which is
anchored with the most intense sensation at the top
(+100) and no sensation at the bottom (0)64.

Volatile detection and quantification
At least seven fruits were removed from 4 °C storage

and pooled in a blender prior to splitting into three 15 g
replicates for immediate capture of volatile emissions. The
remainder was frozen in liquid nitrogen and stored at
–80 °C for subsequent quantification of sugars and acids.
A two-hour collection in a dynamic headspace volatile
collection system65 allowed for concentration of emitted
volatiles on HaySep 80–100 porous polymer adsorbent
(Hayes Separations Inc., Bandera, TX, USA). Elution from
the polymer was described by Schmelz66. Quantification
of volatiles in an elution was performed on an Agilent
7890 A Series gas chromatograph (GC) (carrier gas; He at
3.99 ml min−1; splitless injector, temperature 220 °C,

injection volume 2 µl) equipped with a DB-5 column
((5%-phenyl)-methylpolysiloxane, 30 m length ×250 µm i.
d. × 1 µm film thickness; Agilent Technologies, Santa
Clara, CA, USA). Oven temperature was programmed
from 40 °C (0.5 min hold) at 5 °C min−1 to 250 °C (4 min
hold). Signals were captured with a flame ionization
detector (FID) at 280 °C. Peaks from FID signal were
integrated manually with Chemstation B.04.01 software
(Agilent Technologies, Santa Clara, CA). Volatile emis-
sions (ng1 100gFW−1 h−1) were calculated based on
individual peak area relative to sample elution standard
peak area. GC-mass spectrometry (MS) analyses of elu-
tions were performed on an Agilent 6890 N GC in tandem
with an Agilent 5975 MS (Agilent Technologies, Santa
Clara, CA, USA), and retention times were compared with
authentic standards (Sigma Aldrich, St Louis, MO, USA)
for volatile identification67.

Sugars and acids quantification
Titratable acidity, pH, and soluble solids content were

averaged from four replicates of the supernatant of cen-
trifuged and thawed homogenates68. An appropriate
dilution of the supernatant from a separate homogenate
(centrifugation of 1.5 ml at 16,000 g for 20 min) was
analyzed using biochemical kits (per manufacturer’s
instructions) for quantification of citric acid, L-malic acid,
D-glucose, D-fructose, and sucrose (CAT# 10-139-076-
035, CAT# 10-139-068-035, and CAT# 10-716-260-035;
R-Biopharm, Darmstadt, Germany) with absorbance
measured at 365 nm on an Epoch Microplate Spectro-
photometer (BioTek, Winooksi, VT, USA). Metabolite
average concentration (mg1 100gFW−1) was determined
from two to six technical replicates per pooled sample.
Derived sucrose concentrations via D-glucose and
D-fructose were mathematically pooled.

Statistical analyses and model parameters
For the purpose of comparing averaged sensory features

between samples assessed by different panelists, a mixed
linear model was constructed with panelist as a random
effect. Least square means (Supplementary Table S2) of
the sensory features for each sample were obtained using
SAS software (Version 9.2.; SAS Institute, Cary, NC).
Spearman’s rank-order correlation was used for correla-
tions among consumer attributes. Chemical data were
averaged across replicates.
The whole dataset was divided into three subsets cor-

responding to three periods: 2011-2012, 2013-2015 and
2016-2017 since volatile quantification was performed by
a different technician in each period and the sugars and
acids quantifications were performed three times from
frozen samples according to these periods. We observed
significant differences in chemical abundance among
periods. In order to compensate for technical differences,
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the normalization method of autoscaling69 was conducted
for each chemical compound within each period such that
periods centered to the same mean and standard devia-
tion. Correlations, clustering and predictive models were
built on merged data combining three auto-scaled data-
sets. Pearson correlations were conducted for all pairs of
consumer attributes and chemical compounds.
After false discovery rate (FDR) correction, the corre-

lation matrix was plotted with the “corrplot” package in
R for visualization of the relationships. Correlations were
filtered with p < 0.01 and order of variables was ranked via
hierarchical clustering. Non-supervised hierarchical clus-
tering analysis was conducted with the “pvclust” package
in R using method.hclust= “ward”. AU (Approximately
Unbiased) p-values and BP (Bootstrap Probability)
p-values were calculated via multiscale bootstrap resam-
pling to measure the confidence of the clusters70. Sensory-
chemical network was constructed with the “ggraph”
package in R. Only significant correlations were retained
after Bonferroni correction to reduce the number of edges
for better visualization. Significant relationships between
nodes were connected by edges. Kleinberg’s authority
centrality scores were calculated for each node to reveal
importance of the volatiles in the network.
Partial least square models were built with the “PLS”

package in R. Sweetness and consumer liking were
regressed on sugars, acids, volatiles and texture liking.
Three PLS models corresponded to the three datasets:
2011-2012, 2013-2015 and 2016-2017. The variable
importance for the projection (VIP)71 was calculated with
the R package “PLSVarSel” to reveal important com-
pounds for predictions. We selected 3 principal compo-
nents for all models due to the smallest square root of
mean square error (RMSE) for this number of compo-
nents (data not shown). A chemical compound was
deemed to be important to predict a sensory response if it
had a minimum VIP score of 1.072 in two or more of the
three datasets. For each of the compounds, a t-test on the
slope of the volatile β was applied in a multiple linear
regression containing the volatile and total sugars.
Machine learning algorithms were compared for pre-

diction accuracy of liking and sweetness with the “caret”
package in R. The whole dataset was split randomly into
training (90%) and test (10%) sets for cross-validation
(CV). Training dataset were then trained with Random
Forest (RF), bayesGLM, GLM, GLMBOOST, LASSO, and
PLS models. For comparison, a simple GLM model of
individual sugars and acids was constructed using only
sucrose, glucose, fructose, malic acid and citric acid.
SVMlinear and xgbDART models were also tested but are
not reported due to low performance and long compu-
tational time, respectively. Nested cross validation of five-
fold was performed within 90% training data to tune the
hyperparameters. A hundred iterations of nested cross

validation were performed to evaluate the stability of
model performance.

Genetic diversity analysis
Twenty-six cultivars and selections included in the

sensory study were also genotyped (Supplementary Table
S7). These included UF germplasm, UC-Davis cultivars
and two cultivars from other origins. Genotyping was
performed using the 38 K Axiom® IStraw35 384HT
array37. Principal component analysis (PCA) was con-
ducted to examine genetic relationships among samples
from different origins. SNPs with missing data were
omitted in the PCA analyses. A similar PCA was also
conducted using chemical data. Individual plots were
plotted with the “factoextra” package in R.

Genetic association analysis
Eight experimental populations, genotyping methods

and volatile collection and quantification methods for this
analysis are described previously73. In brief, eight out-
crosses were made among octoploid cultivars and elite
materials between year 2012 and 2016. Two to four clonal
replicates of each seedling were established in single plots
in the research field. Fruits were collected three times for
each seedling during its growing season. Fruit samples
were instantly frozen in liquid nitrogen upon harvest and
stored at −80 °C prior to quantification with GC-MS.
Relative abundances of individual esters were normalized
via the Box-Cox transformation algorithm performed in
R-studio prior to genetic correlation. Association analysis
was performed using the mixed linear model method
implemented in GAPIT v374 in R, using marker positions
oriented to the linkage map derived from the ‘Holiday’ x
‘Korona’ mapping population75. Genetic associations were
evaluated for significance based on the presence of mul-
tiple co-locating markers of p-value < 0.05 after FDR
multiple comparisons correction.
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